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A solution of the time-dependent Schrödinger equation is required in a variety of problems in physics and
chemistry. These include atoms and molecules in time-dependent electromagnetic fields, time-dependent ap-
proaches to atomic collision problems, and describing the behavior of materials subjected to internal and
external forces. We describe an approach in which the finite-element discrete variable representation �FEDVR�
is combined with the real-space product �RSP� algorithm to generate an efficient and highly accurate method
for the solution of the time-dependent linear and nonlinear Schrödinger equation. The FEDVR provides a
highly accurate spatial representation using a minimum number of grid points �N� while the RSP algorithm
propagates the wave function in O�N� operations per time step. Parallelization of the method is transparent and
is implemented here by distributing one or two spatial dimensions across the available processors, within the
message-passing-interface scheme. The complete formalism and a number of three-dimensional examples are
given; its high accuracy and efficacy are illustrated by a comparison with the usual finite-difference method.
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I. INTRODUCTION

Many problems in atomic-scale physics rely on the devel-
opment of efficient numerical methods for the solution of the
time-dependent Schrödinger equation �TDSE�. A representa-
tive, although by no means exhaustive, sample includes �1�
the scattering of electrons or atoms from other atomic or
molecular targets �1–6�, �2� the interaction of short-pulse la-
ser fields with atoms �7–11�, and �3� the evolution of ultra-
cold atomic systems such as Bose-Einstein condensates
�12–14�. The latter, which involves the solution of a nonlin-
ear, time-dependent equation, bears marked similarity to the
equations governing the propagation of optical pulses in
nanostructured optical fibers. Light pulses need to be coupled
and controlled at will through appropriately engineered ma-
terials with wavelength-scale morphology. Theoretical mod-
eling of these phenomena is important to gain a fundamental
understanding of atomic and optical processes at the micro-
scopic level and to provide a scientific basis for the design
and development of nanostructured materials for use in op-
tical communication, optical sensors, and advanced compu-
tation, which demands theoretical and large-scale computa-
tional modeling of all of these phenomena.

The numerical solution of the time-dependent
Schrödinger equation relies heavily on the discretization of
the variables �r , t� in coordinate or function space �15�.
Boundary conditions, which depend on the values �deriva-
tives� of the wave function at specific spatial points or sur-
faces, may be incorporated by imposing these particular con-

straints on the solution at those points or surfaces. For
example, if finite-difference techniques are used for the spa-
tial variables, the values of the wave function at these special
locations are required to take specific values which make the
discretization process deterministic. Discretization proce-
dures in function space, typically, incorporate the boundary
conditions by requiring that the basis set satisfy the requisite
values. Initial conditions, such as those involved in the time
coordinate, are imposed by requiring the wave function to
behave in a fixed fashion at the initial time point. As the
system evolves in time, it may be critical from a computa-
tional standpoint to adapt the grid or basis set to reflect the
changes in the wave function which result from the propaga-
tion. In addition, the time propagation itself may require time
steps which vary significantly over the physical domain of
interest. While it is straightforward to change the size of the
time step in the calculation, it is more difficult and time
consuming to change the basis set and/or grid. The latter
requires a recomputation of matrix elements of the Hamil-
tonian which for many methods is not a trivial part of the
overall calculation. The “regridding” question will be ad-
dressed in a later paper.

In this exposition, we develop the basic formulation of
the real-space-product, finite-element discrete-variable-
representation �RSP-FEDVR� approach �16� for solving the
three-dimensional, multiparticle time-dependent Schrödinger
equation. The approach employs a RSP technique for evolv-
ing the solution in time, which gives the optimal factoriza-
tion of the exponential propagation operator for a particular
order in the temporal variable. A partition of the spatial vari-
ables into finite elements �FE’s� provides an efficient means
of spanning space with a flexible grid that yields a sparse
representation. A DVR basis then determines the wave func-
tion within each element. The DVR gives an economical
means of accurately calculating the matrix elements of the
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various operators on this basis. This occurs through the close
association of the DVR basis functions with the classical
orthogonal polynomials and with a particular Gauss quadra-
ture. The integrated method supplies a powerful means of
addressing very complicated applications. In addition, the
form taken by the propagation operator readily accommo-
dates current parallel computer architectures and routinely
demonstrates linear scaling.

We organize the paper into six sections. Section II gives a
general, formal overview of the RSP-FEDVR method while
Sec. III provides the intricate computational details. In Sec.
IV, we describe several representative applications that test
both the efficiency and scaling of the approach, and in Sec.
V, we present the results of the application of the RSP-
FEDVR on these specific cases. In this section, we also de-
tail several parallel scaling strategies. Finally, Sec. V con-
tains a brief summary.

II. GENERAL FORMALISM

A. Algebraic reduction

The N-particle, time-dependent Schrödinger equation may
be generally written as

i�
�

�t
��r,t� = Ĥ�r,t���r,t� � �T̂�r� + V̂�r,t����r,t� , �1�

where the caret designates an operator. The Hamiltonian con-

tains kinetic T̂�r� and potential V̂�r , t� energy components in
which the latter may contain nonlinear and time-dependent
contributions. In an N-particle system, the kinetic energy has
the form

T̂�r� = �
i=1

N

T̂�ri� , �2�

with the individual operators usually given by

T̂�ri� = −
�2

2Mi
�i

2, �3�

where Mi is the mass of the ith particle. The potential energy
typically consists of a complex function of the interparticle
coordinates with r= �r1 , . . . ,rN�. The usual strategy expands
the unknown wave function in a finite set of Nb known spa-
tial functions �similar to the pseudospectral method �17��,

��r,t� = �
q=1

Nb

Cq�t��q�r� , �4�

and reduces the time-dependent Schrödinger equation to a
set of coupled equations for the coefficients Cq,

i�
�

�t
Cq�t� = �

p=1

Nb

Hq,p�t�Cp�t� , �5�

where

Hq,p�t� =� �q�r�†Ĥ�r,t��q�r�dr , �6�

with the dagger �†� the Hermitian conjugate.
We could just as easily have included some of the time

dependence directly into the expansion basis. In general, this
leads to a set of coupled, nonlinear, time-dependent equa-
tions of greater complexity than Eq. �5�, but needing many
fewer expansion functions. One example of this is the mul-
ticonfiguration, time-dependent Hartree method developed
by Beck et al. �2�. For illustrative purposes, we shall employ
a time-independent basis since many important features be-
come more transparent in this representation. In addition, we
shall confine our treatment to a product spatial basis although
the approach yields to more complex formulations. For a
single particle in a three-dimensional �3D� Cartesian space,
the expansion basis becomes

�q�r1� = u��x1�u��y1�u��z1� , �7�

where q signifies the composite label ����� and the expan-
sion of a single-particle wave function has the form

��r1,t� = �
�,�,�

C����t�u��x1�u��y1�u��z1� . �8�

B. Finite element

Global basis functions can encounter difficulties in de-
scribing a complicated function over all space. In this case,
FE approaches have demonstrated considerable flexibility
�18,19�. These generally involve dividing space into a set of
elements with a local basis, connected at the boundaries,
within each element. Since the size and number of basis
functions may vary among the elements, they can accurately
map very complicated structures. As an example, a product
function in one of the spatial dimensions that has been
divided into Nelm elements with ne basis functions �k
=1, . . . ,ne� in element e, spanning the region �xl

e ,xr
e�, has

the form

u��x� � uk
e�x� �xl

e � x � xr
e� , �9�

where �=�m=1
e nm+k and gives the global label of the kth

basis function within the mth element. We select the basis
within each element according to a DVR. Drawing, for ex-
ample, on the close relationship between classical orthogonal
polynomials and Gaussian quadratures, the DVR provides an
accurate, economical means of representing a function
within an element. We present the details in Secs. III A and
III B.

C. Temporal propagation

Now that we have established a spatial basis, we return to
Eq. �5� rewritten in matrix notation as

i
�

�t
C�t� = H�t�C�t� , �10�

where �C�t��q=Cq�t� and �H�t��qp=Hqp�t�. This represents a
first-order differential equation in time for which the propa-
gation from ti to tf is given by

C�tf� = T exp�−
i

�	�ti

tf

dt�H�t��
�C�ti� �11a�
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�U�H,tf,ti�C�ti� , �11b�

where T is the time-ordering operator and U the temporal
propagator. For a time-independent Hamiltonian or one that
changes little over the interval �t= tf − ti, we have

U�H,�t� = exp	−
i

�
H�t
 . �12�

We must develop techniques to determine efficiently the
propagator in order to advance the coefficient vector in time.
The simplest scheme involves expanding the exponential op-
erator �20� in Eq. �12� in a Taylor series of �t as

U�H,�t� = �
n
	− i�t

�

n

Hn. �13�

Approximations to the propagator result from truncations of
this expansion at different orders of �t. It is important to
examine these truncations carefully as they are not always
stable. For example, the Euler method, which keeps terms to
O��t�, is unstable. If we disregard the effort needed to com-
pute the time-dependent part of the interaction potential, the
numerical effort required to advance the wave function from
one time to the next depends, at a minimum �O��t��, on Nb

2,
the cost of a single, matrix-vector multiplication �Nb is the
total number of basis functions�. Typically, the cost is even
larger since most approaches require more than a single
matrix-vector multiplication or even a matrix inversion. In
most instances, the time dependence of the interaction poten-
tial is simple and does not dominate the cost of the compu-
tation. We have found that the basic real-space-product form
�21� and its derivatives �10,14� provide a systematic means
of representing the temporal propagator to various orders as
well as maintaining stability and conserving the norm. We
give further details in Sec. III C.

III. COMPUTATIONAL DETAILS

A. Discrete variable representation

The discrete variable representation was introduced into
chemical physics by Light, Hamilton, and Lill in 1985 �22�.
Since that time it has played a major role in reducing the
numerical effort required to compute Hamiltonian matrix el-
ements in a broad array of quantum-mechanical problems.
These include the calculation of the vibrational levels of
complex molecules, heavy particle nonreactive and reactive
scattering, and solutions of the nonlinear Schrödinger equa-
tion. The major advantage of the DVR derives from the re-
lationship between the DVR basis and a numerical grid. In
the DVR basis, matrix elements of local operators of the
coordinates may be replaced, to a very high degree of accu-
racy, by their values on the numerical grid. A similarity trans-
formation, which diagonalizes the coordinate operator in the
DVR basis, mathematically connects the numerical grid and
the basis. For our application, we employ the DVR to con-
struct a basis within each of the finite elements. We shall use
as an example one element e with ne basis functions span-
ning �xl

e ,xr
e� for a single spatial coordinate x since repeated

application of the prescription in each spatial dimension will

permit the construction of the full multidimensional product
basis.

The DVR’s used in the present study all derive from the
classical orthogonal functions, satisfying the three-term re-
cursion relationship

�n	n = �x − �n−1�	n−1 − �n−1	n−2. �14�

An associated Gauss quadrature rule exists having the same
number of points and weights �xi

e ,wi
e� that will exactly in-

tegrate any integrand whose degree is �2ne−1� or less. The
points and weights may be obtained from diagonalization of
the tridiagonal matrix built from the recursion coefficients �
and �. The recursion coefficients are known analytically for
all classical orthogonal functions but may be computed for
any positive-definte weight function via the Lanczos proce-
dure �16�. As a corollary the orthonormality integral and the
matrix representation of the coordinate operator involving
the truncated basis are given exactly within the quadrature
rule. Under these conditions, we can transform from the
original spectral basis of ne functions, 	e, to a new basis of
DVR or coordinate functions called, ue, as follows:

ui
e�x� = �

n=0

ne−1

cn
e	n

e�x� , �15a�

cn
e = �	n

e
ui
e� = �

xl
e

xr
e

w�x�	n
e�x�ui

e�x�dx �15b�

=�wi
e	n

e�xi
e� . �15c�

The coordinate functions also have a representation in
terms of the Lagrange interpolation prescription, which may
prove more convenient for calculational purposes,

ui
e�x� = �

n=0

ne−1

�wi
e	n

e�xi
e�	n

e�x� ,

=
1

�wi
e �

q=1

ne

�
x − xq

e

xi − xq
e . �16�

These function also have several simple, useful properties

ui
e�xj

e� =
�i,j

�wi
e
, �17a�

�ui
e
x
uj

e� = �i,jxi
e. �17b�

While we have performed all of the integrals using the Gauss
quadrature rule, we have made no approximations as a con-
sequence of the fact that the quadrature rule is exact for all
integrands �2ne−1� or less. Also, the DVR functions are de-
fined as continuous functions of the spectral basis. This exact
duality is guaranteed when 	e is one of the classical orthogo-
nal functions. Moving from the spectral to the DVR repre-
sentation offers no particular advantage unless we do some-
thing further. Consider a matrix element of some general
V�x� in the DVR basis,
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�ui
e
V
uj

e� = �
q=0



Vq

q!
�ui

e
xq
uj
e� , �18�

where we have expanded the potential in an infinite power
series in x. If the basis set ue were complete, we could insert
the complete set between each power of the coordinate, use
the fact that x is diagonal in the basis, and the result would
be

�ui
e
V
uj

e� = Vi
e�i,j . �19�

Exactly the same result may be obtained by using the Gauss
quadrature rule to evaluate the integral. This is not an acci-
dent since the two representations are equivalent. The DVR
representation assumes that the quadrature-matrix represen-
tation is sufficiently accurate and complete that matrix ele-
ments of a general V�x� may be evaluated by the N-point
quadrature rule. In the DVR representation these matrix ele-
ments are then diagonal and equal to their value at the Gauss
quadrature points. This approximation has been shown to be
accurate in a broad class of problems. Consequently, trans-
forming to the DVR basis has significant advantages over the
original spectral basis in that complex matrix elements of the
potential are diagonal and equal to their values as the quadra-
ture points. The resulting sparse matrix representation of the
Hamiltonian may be exploited when performing matrix vec-
tor multiplications such as those required in iterative eigen-
value or linear systems methods.

B. Finite-element DVR

The FEDVR takes these ideas one step further by com-
bining the basic finite-element method with the DVR �19�. In
its most elementary incarnation, each spatial coordinate is
divided into subregions �elements� and a Legendre DVR of
arbitrary order used in each element. Requiring continuity of
the DVR functions at the element boundaries connects the
subregions. To do this requires that the first and last points in
each interval coincide. This in turn necessitates the introduc-
tion of a simple generalization of the Gauss quadrature rules,
known as Gauss-Lobatto quadrature, in which the end points
of the interval are specified in advance. A “bridge” function
of construct

ûne

e �x� =
une

e �x� + u1
e+1�x�

�wne

e + w1
e+1

�20�

guarantees the continuity across the element boundaries. The
union of all of the internal DVR functions in each interval
plus the bridge functions forms the global basis. For ex-
ample, in the special case that all Nelm elements had the same
number of functions, ne, the total number of basis functions
would equal Nelmne− �Nelm−1�. One remaining point con-
cerning boundary conditions, discussed in more detail in Ref.
�23�, deserves mentioning. If the solution to the Schrödinger
equation is required to vanish at the boundary points, it is
necessary to discard any basis function from the expansion
set which is nonvanishing at that point. Since these points are
part of the Gauss-Lobatto rule, this is simple to do. Failure to
do so will result in unpredictable and erroneous results.

Very sparse Hamiltonian matrices can result from the
FEDVR. The sparsity depends on the number of DVR basis
functions in an element and purely derives from the kinetic
energy matrix in that dimension. For example, if we had four
elements with a �4/3 /3 /2� basis set distribution, the Hamil-
tonian would have the following appearance:

�
H1,1 H1,2 H1,3 H1,4 0 0 0 0 0

H2,1 H2,2 H2,3 H2,4 0 0 0 0 0

H3,1 H3,2 H3,3 H3,4 0 0 0 0 0

H4,1 H4,2 H4,3 H4,4 H4,5 H4,6 0 0 0

0 0 0 H5,4 H5,5 H5,6 0 0 0

0 0 0 H6,4 H6,5 H6,6 H6,7 H6,8 0

0 0 0 0 0 H7,6 H7,7 H7,8 0

0 0 0 0 0 H8,6 H8,7 H8,8 H8,9

0 0 0 0 0 0 0 H9,8 H9,9

� .

In the next section, we shall demonstrate how to exploit this
sparsity in the temporal propagation.

C. Real-space-product formalism

A variety of approaches exist for propagating an initial
wave packet from t=0 to times at which specific physical
parameters may be extracted from the time-evolved wave
function. These include all of the standard techniques for
integrating any first-order differential equation, as well as
more specialized approaches such as the Arnoldi-Lanczos
method �24,25�, the Crank-Nicholson method, and split-
operator technique �21,25–30�. These methods are either
termed explicit or implicit depending on whether the calcu-
lation of the wave function at t= t0+�t does �implicit� or does
not �explicit� require the solution of a set of linear equations.
Explicit methods typically require one or more operations of
the Hamiltonian matrix on a known vector. Of the commonly
used approaches, the Crank-Nicholson method is an implicit
method, while the split-operator technique is explicit. Im-
plicit methods necessitate the efficient solution of a large set
of algebraic equations. If the equations have some specific
structure, such as being tridiagonal, this is easy. For the ex-
plicit approaches, the rate determining step is the multiplica-
tion of the Hamiltonian on a known vector. Again, exploita-
tion of the structure of the Hamiltonian becomes of
paramount concern. For example, if the matrix is sparse, this
can be exploited to reduce the cost of propagation signifi-
cantly. Another desirable feature of any method that propa-
gates the quantum-mechanical wave function is stability and,
for real-time propagation, unitarity.

We return now to Eq. �12� for the general temporal propa-
gator and note that this expression remains valid for any
value of �t= �tf − ti�. However, if �t is small, then we may
approximate this exponential using a variety of methods.
These include power-series expansions, Runge-Kutta, Crank-
Nicholson, Lanczos-Arnoldi, Chebyshev, and split operator
techniques. For a time-dependent Hamiltonian, approxima-
tions exist to the time-ordered exponential for short enough
times, but the time required in the Hamiltonian may not be ti.
This can lead to extra work if the Hamiltonian contains non-
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linear terms that depend on the wave function. The most
frequently used approximation replaces the time in the
Hamiltonian by ti and thus Eq. �11� becomes

C�ti + �t� = U„H�ti�,��t�…C�ti� �21�

=exp�−
i

�
H�ti��t�C�ti� . �22�

Other methods, such as the Crank-Nicholson or exponential
midpoint method, need the Hamiltonian at �ti+

�t
2

� while a
time-reversed symmetry propagator requires the Hamiltonian
at both ti and tf. Suzuki and Yamauchi �30� provided a time-
dependent generalization of the Lie-Trotter-Suzuki �LTS�
technique they developed for a time-independent Hamil-
tonian. The time-dependent version of the Suzuki-Yamauchi
approach requires that the Hamiltonian be evaluated at a
number of intermediate times, whose values depend on the
order of the method. This is needed in order to retain the
formal accuracy of the method. In practice, the higher-order
��2� Suzuki-Yamauchi formulas are cumbersome for some
nonlinear problems, but this may not be of importance in
practice. For our purposes, the main advantage of the LTS
formalism rests with the development of approximations to
the time evolution operator in which the Hamiltonian con-
sists of a sum of non-commuting operators. A suitable de-
composition of a Hamiltonian matrix of the form H1+H2�t�
to second-order accuracy is

U2�H,t + �t,t� = U1�H2�t + �t�,
�t

2
�U1�H1,�t�U1�H2�t�,

�t

2
�

�23�

in terms of the simple first-order propagators U1,

U1�H1,�� = exp�−
i

�
H1�� ,

U1�H2�t�,�� = exp�−
i

�
H2�t��� . �24�

Similar splitting algorithms have been examined in recent
investigations �31–34�. Higher-order schemes arise from suc-
cessive applications of U2, evaluated at intermediate times.
Ultimately, the practical question reduces to how efficiently
can U1 be evaluated for the operators in the Hamiltonian.
The issue for using higher-order as opposed to lower-order
approaches remains clearly a question of accuracy versus the
number of arithmetic operations for a fixed time step �16�.
We leave that discussion for future publications and only
remark here that such comparisons can depend strongly on
the problem.

The explicit manner of the implementation of the second-
order LTS �RSP2� scheme depends on the structure of the
Hamiltonian. In a Cartesian coordinate system in three di-
mensions, we typically have a Hamiltonian of the form
�where the kinetic and potential energy terms should be re-
garded as operators or matrices�

H = Tx + Ty + Tz + V�x,y,z,t� . �25�

The first step is to split off the time-dependent potential to
get

U2�H,t + �t,t�

= exp�−
i

�
V�x,y,z,t + �t�

�t

2
�exp�−

i

�
�Tx + Ty + Tz��t�


exp�−
i

�
V�x,y,z,t�

�t

2
� . �26�

Since the kinetic energy operators commute, the middle term
of the above equation may also be written as the product of
exponential operators of Tx, Ty, and Tz.

We may now introduce the FEDVR basis as a representa-
tion for the operators. In this basis, V�x ,y ,x , t� is just a di-
agonal operator, evaluated at the DVR grid point �xi ,yj ,zk�.
Each of the kinetic operators has the block structure of the
array pictured in Sec. III B. All that remains is to find an
efficient way to compute the exponential of the matrix in
Sec. III B. This matrix has an overlapping block structure, a
simple generalization of the three-point finite difference for-
mula to larger blocks. The strategy is now obvious; each of
the kinetic energy matrices is written as a sum of nonover-
lapping, “odd” and “even” blocks, as exemplified by

�
T1,1 T1,2 T1,3 T1,4 0 0 0 0 0

T2,1 T2,2 T2,3 T2,4 0 0 0 0 0

T3,1 T3,2 T3,3 T3,4 0 0 0 0 0

T4,1 T4,2 T4,3 T4,4 T4,5 T4,6 0 0 0

0 0 0 T5,4 T5,5 T5,6 0 0 0

0 0 0 T6,4 T6,5 T6,6 T6,7 T6,8 0

0 0 0 0 0 T7,6 T7,7 T7,8 0

0 0 0 0 0 T8,6 T8,7 T8,8 T8,9

0 0 0 0 0 0 0 T9,8 T9,9

�
=�

T1,1 T1,2 T1,3 T1,4 0 0 0 0 0

T2,1 T2,2 T2,3 T2,4 0 0 0 0 0

T3,1 T3,2 T3,3 T3,4 0 0 0 0 0

T4,1 T4,2 T4,3 T4,4/2 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 T6,6/2 T6,7 T6,8 0

0 0 0 0 0 T7,6 T7,7 T7,8 0

0 0 0 0 0 T8,6 T8,7 T8,8/2 0

0 0 0 0 0 0 0 0 0

�
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+�
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 T4,4/2 T4,5 T4,6 0 0 0

0 0 0 T5,4 T5,5 T5,6 0 0 0

0 0 0 T6,4 T6,5 T6,6/2 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 T8,8/2 T8,9

0 0 0 0 0 0 0 T9,8 T9,9

� ,

�27�

where we have used T to symbolize any one of the kinetic
energy operators. Each of the matrices on the right-hand side
of Eq. �27� is composed of block-diagonal submatrices. Each
of these small blocks may be easily diagonalized before be-
ginning the propagation �10,16�.

By splitting each of the exponentials involving the kinetic
energy operator as

U2
T�T,t + �t,t�

= exp�−
i

�
Todd

�t

2
�exp�−

i

�
Teven�t�exp�−

i

�
Todd

�t

2
� ,

�28�

we can apply the full exponential on a given vector as a
series of small, independent, prediagonalized matrices. Com-
munication between the subblocks occurs via the overlap-
ping, interface matrix elements. Since the communication
between the blocks is limited, parallelization becomes imme-
diate and transparent �see Sec. V A�. In addition, the number
of nonzero multiplies needed to propagate a vector from one
time step to the next is proportional to Nb, where Nb is the
number of three-dimensional grid points. The proportionality
factor depends on the number elements employed and the
size of the DVR representation in each element. Clearly, it is
advantageous to use a large number of elements with as
small a DVR per element as possible since that produces the
largest number of zeros in the matrix. Therefore, to advance
the solution from one time �t� to another �t+�t�, the RSP-
FEDVR approach requires only mNb operations �m�Nb�,
instead of Nb

2 for a general dense Hamiltonian matrix.

IV. APPLICATIONS

We consider several representative examples that demon-
strate the efficacy of the RSP-FEDVR approach. These in-
clude both effective one-particle problems as well as a two-
electron case. For the effective one-particle cases �N=1�, we
solve a 3D TD Schrödinger equation of the form

i�
�

�t
��r,t� = 	−

�2

2M
�2 + V�r,t�
��r,t� �29�

for three cases.
�i� Harmonic oscillator with a potential �in “trap units,”

�x=�y =�z�

V�x,y,z� =
1

2
�x2 + y2 + z2� . �30�

We generally employ “trap units” with length given in units
of dx=�� /M�x, time in units of �x

−1, and energy in units of
��x.

�ii� Bose-Einstein condensate in an aspherical harmonic
trap in which the wave function represents all Na correlated
atoms in the system, and the nonlinear equation �Gross-
Pitaevski� has the following potential form:

V�x,y,z,t� =
M�x

2

2
�x2 + �2y2 + �2z2� + g
��x,y,z,t�
2,

�31�

where M is the particle mass, �i, the frequency in the ith

dimension, �=�y /�x, �=�z /�x, and g=
4��2aNa

M with a the
scattering length. We consider two trap configurations.

�a� Case 1 (cylindrical). Rb�M =87 amu�, �=1, �
=0.6386, �x=2�
8.3 rad/s, a=5.77 nm, Na=1.
106, giv-
ing dx=3.74 �m and g=5.816
104;

�b� Case 2 (aspherical). Na�M =23 amu�, �=�2, �=2,
�x=2�
354 rad/s, a=2.75 nm, Na=217, giving dx
=1.565 �m and g=2.873
103.

�iii� Hydrogen atom in a laser field of an ultrashort, cir-
cularly polarized �CP� few-cycle pulse:

V�r,t� = −
1

�x2 + y2 + z2
+ xEx�t� + yEy�t� . �32�

The CP field has been decomposed into two components Ex
and Ey, which are derived from the vector potentials Ax�t�
=−

E0

� sin2��t
T

�sin��t+	� and Ay�t�=−
E0

� sin2��t
T

�cos��t+	�,
where T is the pulse duration; E0 and � are the laser peak
field strength and frequency, respectively. In our example,
the CP-FCP has a wavelength of 800 nm and a duration �T�
of 5 fs. Its maximum intensity equals 2
1014 W/cm2, with
a carrier-envelope phase �	� of 60°.

We also make applications to a representative two-
electron system �N=2�: helium. In order to avoid large grids,
we take account of spherical symmetry and expand the total
wave function in terms of a complete set of two-electron
angular functions Yl1m1l2m2

LM ,

��r1,r2,t� = �
LM

�
l1m1

�
l2m2

�l1m1l2m2

LM �r1,r2,t�Yl1m1l2m2

LM ��1,�2� ,

�33�

where M =m1+m2 and 
�l1− l2� 
 �L� �l1+ l2�. The spin vari-
ables have been omitted since they are conserved in our ap-
plications and limited to either singlets or triplets. Substitut-
ing the expansion �33� into the Schrödinger equation leads to
a set of time-dependent, two-dimensional, coupled partial
differential equations in the radial variables �r1 ,r2�,
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i�
�

�t
�i�r1,r2,t� = �T̂1 + T̂2��i�r1,r2,t�

+ �
i�

Vi,i��r1,r2,t��i��r1,r2,t� , �34�

where i stands for the collection of angular variables
�LMl1m1l2m2�. The coupling between the partial wave com-
ponents is due to the Coulomb repulsion of the electrons; the
diagonal terms represent the electron-nuclear attraction. The
full form of the matrix elements appears in Ref. �8�. The
Coulomb interactions conserve the total angular momentum
quantum numbers �LM�, and in the absence of an external
electromagnetic field, the equations block-diagonalize into
�LM� components. An external electromagnetic field, de-
pending on the dipole operator, will induce a coupling be-
tween the L and L+1 and L−1 components of the wave
function. It is desirable and possible to exploit this limited
coupling in the time propagation step. The final step in the
process is the expansion of the radial wave function as

�i�r1,r2,t� = �
p,q

dpq,i�t�O„up�r1�uq�r2�… , �35�

where O symmetrizes or antisymmetrizes the product basis.
Thus the problem is reduced to the time propagation of a set
of linear or nonlinear algebraic equations.

V. RESULTS AND DISCUSSION

A. Parallel scaling

Calculations to propagate the multidimensional TDSE can
often consume considerable computational resources. Conse-
quently, an approach such as the RSP-FEDVR, which, as we
shall demonstrate, yields rather easily to parallel constructs,
appears very attractive. For this implementation, we have
employed the well-developed message passing interface
�MPI� �35� on state-of-the-art supercomputers in both a “one-
dimensional” and “two-dimensional” decomposition scheme
with the details described in the next two sections.

1. 1D decomposition

The 1D-decomposition method provides a simple,
straightforward MPI scheme for ease of implementation. For
a 3D TDSE in Cartesian coordinates, the kinetic energy op-
erators commute so that we may choose to decompose in one
of the dimensions. For example, we consider a 3D space,
spanned by Mx
My 
Mz elements, where Mx, My, and Mz
give the number of elements in the x, y, and z dimensions,
respectively. We choose one dimension—say, the x—in
which to divide Mx elements onto N CPU’s. Thus, on each
CPU we have �Mx /N�
My 
Mz elements for processing.
Each CPU does its own operations on the loaded elements.
In order to balance exactly the loading within the total num-
ber of CPU’s, we require the ratio of Mx /N be an integer.
Furthermore, since the RSP2 propagator splits the elements
into even and odd subblocks, we set the ratio Mx /N to an
even integer. Therefore, by construction, we have an even
number of elements on each CPU. This maximizes the num-

ber of arithmetic operations within each CPU and minimizes
the communication between neighboring CPU’s. The basic
operation on each CPU consists of the performance of the
required matrix-vector multiplications and communication of
the values of the new vector at the “interface points” to
neighboring CPU’s. The communication between CPU’s
needs to be performed three times, corresponding to the odd-
even-odd splitting of the exponential �see Eq. �28��. The data
communication is limited to the boundary �“interface”�
points of wave functions in neighboring nodes. Defining the
coefficient vector on the jth CPU as Cnx:jq,ny,nz

, where q is the
collection of all x points on that CPU, we must send
Cnx:jn1

,ny,nz
, the value of the vector at the first point for all

�ny ,nz� points to the �j−1�th CPU. Similarly, we need to pass
Cnx:jnf

,ny,nz
, the last point for all �ny ,nz� points to the �j

+1�th CPU. The CPU ID number j runs from 0 to N−1 in
the MPI scheme. In essence, we are cutting the 3D cubic
elements �points� into N slices, and only the boundary points
need passing between neighboring nodes.

We have tested the performance of the FEDVR 1D de-
composition on the LANL’s Alpha cluster “QSC,” a super-
computer with 256 Compaq AlphaServer ES45 �a 4-CPU
SMP with EV68 1.25-GHz processors�. The test problem
involves the determination of the ground-state energy of a
Bose-Einstein condensate �BEC� in a 3D cylindrical har-
monic trap as described in case 1 in Sec. IV. The used grid
consisted of 4097
81
81�2.7
107 points. We used
2048 elements in the x dimension and 40 elements in both
the y and z dimensions with a three-point �basis function�
DVR per element. Since such an elongated data set favors
the current 1D-decomposition scheme, we observe a “super-
scaling” from 4 to 128 CPU’s in Fig. 1. Thus, when we
double the number of CPU’s, we get more than a factor of 2
increase in speed. This “superscaling” likely results from a
reduction in memory accessing as the number of CPU’s in-
creases.

For the second scaling test, we examine the same BEC
but with less disparity between the grids in each dimension.
We employ 1024 elements to span x-dimensional space and
256 elements for y and z axes. Again, a three-point DVR was

FIG. 1. �Color online� The scaling test of RSP-FEDVR on a
supercomputer “QSC” of LANL for the ground state of Bose-
Einstein condensate in a 3D cylindrical trap �case 1�, which is
spanned by a grid size of 4097
81
81�2.7
107 points. Since
such an elongated data set favors our 1D-decomposition scheme,
we are observing an “superscaling” from 4 to 128 CPU’s.
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used per element. Thus, we get a total grid size of 2049

513
513�5.4
108 points. Another supercomputer
cluster “Flash,” which is a dual Opteron cluster �2 AMD
2.0-GHz� having 747 nodes �1494-CPU� with Myrinet con-
nection, performed this scaling test. The results are shown in
Fig. 2 by the blue “diamond” symbols. We obtained an al-
most linear scaling as the number of processors increased to
N=128 CPU’s. However, the linear scaling breaks down
from N=128 to N=256 CPU’s as a consequence of the lack
of balance between arithmetic operations and communica-
tions as the number of CPU’s increases. Under the 1D-
decomposition scheme, the amount of data passed has a fixed
size of �ny 
nz� points, independent of the number of pro-
cessors. Thus, the more CPU’s used, the more data passed to
adjacent CPU’s. At some point, message passing begins to
dominate the calculation, and as shown in Fig. 2, the scaling
begins to break down.

2. 2D decomposition

As we have seen in Fig. 2 the “1D decomposition” begins
to deteriorate as the number of CPU’s increases from N
=128 to N=256. In this subsection, we shall discuss an im-
provement based on a two-dimensional decomposition
scheme. Instead of slicing a 3D data set along a single di-
mension �e.g., x dimension as shown above�, we can perform
a two-dimensional slicing—say, in the xy plane—that re-
duces the number of “interface points” passed between
CPU’s as the number of CPU’s increases. Intuitively, this
approach should lead to better scaling for a very large num-
ber of nodes. To accomplish this requires assigning to each
CPU a data set, finding its nearest neighbor CPU’s, and ap-
propriately handling the “boundary” CPU’s. Such an imple-
mentation is more complicated than the “1D decomposition.”
Fortunately, the MPI contains a mechanism for addressing
such problems, called the Cartesian communicator �35�,
which creates a virtual topological, two-dimensional net-
work, in which all neighbors and their boundaries are auto-

matically treated. In addition, we can direct the computer to
allocate the virtual neighbor CPU’s into real physical neigh-
bor nodes. Utilizing such a virtual topological 2D decompo-
sition provides a more efficient parallelization scheme for the
RSP-FEDVR code. Figures 2 and 3 give results for the 2D
scheme. In Fig. 2, the same BEC problem was tested by
using our 2D-decomposed RSP-FEDVR code, for which the
results are plotted in �red� squares. We clearly find that the
scaling is now linear up to n=256 CPU’s. For the largest
number of CPU’s, the 2D decomposition gives a threefold
speeding-up over the 1D-decomposition case, for the same
data set.

Figure 3 shows other examples of the “2D-
decomposition” scheme, for the same BEC problem with
equal-dimensional data sets having 721
721
721�3.75

108 and 1025
1025
1025�1.1
109 points. Here, we
obtain a linear scaling up to 360 and 512 CPU’s for the two
data sets, respectively. Timing results have been obtained by
averaging over 500 time steps.

3. Scaling on the grid size

The above tests considered varying the number of CPU’s
for the same data set, using a fixed grid size. Now, we turn to
another important issue, the scaling of the method with grid
size for a fixed number of CPU’s. For this purpose, we have
performed with the 2D-decomposed RSP-FEDVR code a se-
quence of tests for a fixed number �=64� of CPU’s on the
LANL’s supercomputer “Flash,” varying the total number of
elements from 323 to 5123 for the 3D BEC �case 1�. We still
used the smallest three-point basis for all cases so that the
grid size varied from �2.75
105 to �1.1
109 points in
total. Figure 4 displays the time cost per step as a function of
the total number of finite elements. Except for the case of 643

elements, which shows superscaling, Fig. 4 clearly demon-
strates linear scaling over grid sizes varying by four orders of
magnitude. The superscaling at 643 may result from the co-
incidence of the topological decomposition with the physical
allocation of 64 CPU’s requested.

FIG. 2. �Color online� The scaling test of RSP-FEDVR for a
larger and less elongated data. We treat the same Bose-Einstein
condensate as in Fig. 1 but on a larger 3D grid, which is spanned by
a grid size of 2049
513
513�5.4
108 points. We show both
the “1D-decomposition” and “2D-decomposition” results, respec-
tively, in �blue� diamonds and �red� squares. The “1D decomposi-
tion” begins to break down as the number of CPU’s increases from
N=128 to N=256. However, it shows excellent linear scaling up to
n=256 CPU’s in the case of “2D decomposition.”

FIG. 3. �Color online� Other examples of the “2D-
decomposition” parallelization with the RSP-FEDVR code. Same
BEC test model �case 1� as in previous two figures. Tests are per-
formed for different data sets �marked in the figure� on the two
LANL’s supercomputers “Flash” and “QSC,” respectively.
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B. Demonstrations

1. 3D harmonic oscillator

As a first example, we consider the calculation of the
ground-state �g.s.� energy and wave function of a three-
dimensional spherical harmonic oscillator ��x=�y =�z�. The
potential in trap units has the form V�x ,y ,z�= 1

2 �x2+y2+z2�
with an exact analytical g.s. energy of 1.5��x. We accom-
plish this by evolving a trial wave packet in imaginary time
�t replaced by −it�, which converts the Schrödinger into a
diffusion equation. Propagating the trial wave packet for suf-
ficiently large times relaxes the solution to the ground
state of the Hamiltonian. The size of grid was taken as
�−10.0dx , +10.0dx� in each dimension. Twenty finite ele-
ments were employed, and the number of basis functions
was varied from 3 to 8 per element. The results of the
ground-state energy are shown in Table I. We find that even
with four basis functions per element, we compute an energy
of E0=1.499 996 307. In this case, the total number of points
is only 226 981 �613�. When the number of basis functions
within each element is doubled �meaning a much higher-

order representation�, we compute an energy of E0
=1.500 000 001, which is essentially exact. However, the
number of points is still reasonably small, 1413 points to
discretize the 3D cube of size 203. We compare these results
to those of the conventional three-point finite-difference
�FD� method �21�, for different mesh sizes, in Table I. From
Table I, we see that it is possible to achieve higher-accuracy
results by increasing the number of spatial points with the
RSP-FD method. But the convergence is quite slow. Even
with the largest grid size of 500
500
500, we only obtain
an energy of E0=1.499 907 103, accurate to only the fifth
digit. Using the RSP-FD approach, it was impossible, with
current computational resources, to achieve the same accu-
racy as that of the RSP-FEDVR utilizing much smaller basis
set sizes.

2. BEC in an aspherical trap

We now turn to the case of the nonlinear Schrödinger
equation and treat the GP equation describing a Bose-
Einstein condensate in an aspherical harmonic trap �case 2�.
To find the ground state of a BEC in a trap, we apply the
time-dependent method �RSP-FEDVR� to relax a trial wave
packet in imaginary time. Although direct diagonalization of
the 3D problem is possible, the presence of the nonlinear
term g 
�
2 in the Hamiltonian makes the method somewhat
unwieldy. The time-dependent method is straightforward—
the only complication being that the time steps required are
often small for large nonlinearities. The spatial size used in
each dimension was taken to be �−9.5,10.5�. Twenty equal-
size elements were employed to discrete the space for each
dimension; within each element, we varied the number of
basis functions from 3 to 8. The results are shown in Table II.
Reliable results were obtained with a small number of points,
which is comparable to the result from direct diagonalization
�36� marked “3D diag” in Table II.

3. Ground state of the helium atom

In Sec. IV, we have outlined the formalism for treating
two electrons by employing the time-dependent close-
coupling method. Expanding the solution in terms of coupled
spherical harmonics, the six-dimensional problem is reduced
to a set of coupled partial differential equations in the radial

FIG. 4. �Color online� Tests of the RSP-FEDVR scaling on the
grid size of the 3D BEC problem. It shows a perfect linear scaling
over grid sizes varying by four orders of magnitude.

TABLE I. The comparison of calculated ground-state of a 3D
harmonic oscillator, with the RSP-FD method and the RSP-FEDVR
solver. Tests are done on the LANL’s Beowulf cluster “Grendels,” a
256-CPU dual xeon machine with Myrinet connection.

Method
No. elements

�
 basis�
Total

grid points E0

RSP-FD 1 1043 1.496524844

RSP-FD 1 1443 1.498189365

RSP-FD 1 2003 1.499061950

RSP-FD 1 3003 1.499632781

RSP-FD 1 5003 1.499907103

RSP-FEDVR 20�
3� 413 1.497422285

RSP-FEDVR 20�
4� 613 1.499996307

RSP-FEDVR 20�
6� 1013 1.500000028

RSP-FEDVR 20�
8� 1413 1.500000001

EXACT 1.500000000

TABLE II. The ground-state energy of a BEC in a 3D aspherical
trap �case 2�. For our RSP-FEDVR solver, on each dimension the
20 elements span a space of �−9.5,10.5�. Tests are done on the
LANL’s Beowulf cluster “Grendels,” a 256-CPU dual xeon ma-
chine with Myrinet connection.

Method
No. elements

�
 basis�
Total

grid points E0

RSP-FEDVR 20 413 19.85562355

RSP-FEDVR 20�
4� 613 19.84855573

RSP-FEDVR 20�
6� 1013 19.84925147

RSP-FEDVR 20�
8� 1413 19.84925687

3D Diag 19.847
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variables r1 and r2. The FEDVR is then used to discretize r1
and r2 and to efficiently represent the two-electron radial
wave function.

As an example, we used the RSP-FEDVR to relax a trial
wave packet in imaginary time to find the ground state �L
=0� of the He atom. We included six partial waves for each
electron—i.e., l1= l2=0−5. The calculation utilized 160 finite
elements to discretize each radial variable. The elements
sizes were varied in a geometric progression of 2.5 with the
smallest element size equal to 0.16 a.u. This implies a radial
box size of 115.403 �bohrs=0.0529 nm�. Four basis func-
tions were used in each element, so that the total number of
points is equal to 480 �note that the first point at r1�r2�=0
must be thrown away in order to impose the boundary con-
dition�. With this grid, we obtain a ground-state energy of
E0=−2.9031 a.u., which is in excellent agreement with the
most accurate value of −2.9037 a.u. �37�. The evolution of
the total energy as a function of the damping time is plotted
in Fig. 5. We require only 0.5 fs to converge the ground-state
energy. Again, as in all of the other examples, such accuracy
�only 0.021% deviation� cannot be achieved with a low-order
FD method with such a small number of points. Finally, we
plot the radial probability distribution ��i
�i�r1 ,r2�
2� of the
ground-state wave function of He at the end of the propaga-
tion process in Fig. 6. The figure shows that the symmetric
�1s2� ground state of He has the peak electron probability
around r1=r2�0.93 bohr, which is what quantum mechanics
predicts.

4. Strong-field problem: Hydrogen atom exposed to a circularly
polarized and intense few-cycle pulse

All of the examples above have employed the RSP-
FEDVR for imaginary-time propagation. We conclude with
an example that illustrates the efficacy of the RSP-FEDVR
for real-time propagation. The computational demands re-
quired to solve a 3D problem, such as an atom driven by CP
intense laser pulses, are substantial. The problem requires
very large grids since the laser field can drive the initial
electron wave packet to very large distances. This represents
a case for which our RSP three-point finite-difference ap-
proach �10� simply proved intractable, given the requisite
computational resources required.

Using the RSP-FEDVR code, we have investigated the
dynamics of a hydrogen atom exposed to an intense circu-
larly polarized few-cycle pulse �FCP�. Starting from the
ground state, we run the RSP-FEDVR code for an interaction
time of 5 fs; we observed that the “left-hand” circularly po-
larized field is continuously ionizing the electron wave
packet and rotating it clockwise. The snapshots of electron
probability are shown in Fig. 7, for instants of �a� t=3.0 and
�b� t=5.0 fs.

We used Cartesian coordinates, employing a maximum
600 elements in both the x and y dimensions where the FCP
is circularly polarized. The z coordinate was divided into 80
elements. The wave function in each element was expanded
using only four bases. The final number of grid points was
1801
1801
241�8
108 points. The calculation took al-
most 50 hours per run ��10 000 time steps� utilizing 100
nodes of the LANL supercomputer cluster “Flash.” This
demonstrates a new category of TDSE problem now trac-
table with this method.

VI. SUMMARY

We have developed a real-space-product, finite-element
discrete-variable-representation approach �16� for solving
the three-dimensional, multi-particle time-dependent
Schrödinger equation. The approach employs a RSP tech-
nique for evolving the solution in time, which gives the op-

FIG. 5. The total energy versus time during the imaginary-time
relaxation of a trial wave packet to the ground state of the helium
atom.

FIG. 6. �Color online� The ground-state probability of He on the
�r1 ,r2� plane.

FIG. 7. �Color online� The snapshots of electron probability of a
hydrogen atom, exposed to a CP-FCP, are shown for instants of �a�
t=3.0 fs and �b� t=5.0 fs. The laser pulse has a duration of 5 fs, a
wavelength of 800 nm, and an intensity of 2
1014 W/cm2. The
carrier-envelope phase is equal to 60°, and the laser field is left-
hand circularly polarized.
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timal factorization of the exponential propagation operator
for a particular order in the temporal variable. A partition of
the spatial variables into finite elements provides an efficient
means of spanning space with a flexible grid that yields a
sparse representation. A DVR basis then determines the wave
function within each element. The DVR gives an economical
means of accurately calculating the matrix elements of the
various operators on this basis. This occurs by drawing on
the close association of the DVR basis functions with the
classical orthogonal polynomials and with a particular Gauss
quadrature. The integrated method supplies a powerful
means of addressing very complicated applications. In addi-
tion, the form taken by the propagation operator readily ac-
commodates current parallel-computer architectures and rou-
tinely demonstrates linear scaling.

We have applied the techniques to four representative
problems that include �1� the 3D harmonic oscillator, �2� a

Bose-Einstein condensate in a harmonic trap, �3� an atom
ionized by a circularly polarized laser field, and �4� the two-
electron helium atom. The method handles these cases effi-
ciently and accurately with parallel scaling demonstrated on
hundreds of processors on current distributed-memory archi-
tectures. The approach brings many outstanding 3D, multi-
electron problems within computational range.
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